Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35631778

RESUMO

The overall survival of a plant depends on the development, growth, and functioning of the roots. Root development and growth are not only genetically programmed but are constantly influenced by environmental factors, with the roots adapting to such changes. The peptide AEDL (alanine-glutamine acid-asparagine acid-leucine) at a concentration of 10-7 M had an elongating effect on the root cells of Nicotiana tabacum seedlings. The action of this peptide at such a low concentration is similar to that of peptide phytohormones. In the presence of 150 mM NaCl, a strong distortion in the development and architecture of the tobacco roots was observed. However, the combined presence of AEDL and NaCl resulted in normal root development. In the presence of AEDL, reactive oxygen species (ROS) were detected in the elongation and root hair zones of the roots. The ROS marker fluorescence intensity in plant cells grown with AEDL was much lower than that of plant cells grown without the peptide. Thus, AEDL protected the root tissue from damage by oxidative stress caused by the toxic effects of NaCl. Localization and accumulation of AEDL at the root were tissue-specific. Fluorescence microscopy showed that FITC-AEDL predominantly localized in the zones of elongation and root hairs, with insignificant localization in the meristem zone. AEDL induced a change in the structural organization of chromatin. Structural changes in chromatin caused significant changes in the expression of numerous genes associated with the development and differentiation of the root system. In the roots of tobacco seedlings grown in the presence of AEDL, the expression of WOX family genes decreased, and differentiation of stem cells increased, which led to root elongation. However, in the presence of NaCl, elongation of the tobacco root occurred via a different mechanism involving genes of the expansin family that weaken the cell wall in the elongation zone. Root elongation of plants is of fundamental importance in biology and is especially relevant to crop production as it can affect crop yields.

2.
Biology (Basel) ; 9(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962161

RESUMO

Various abiotic stresses cause the appearance of reactive oxygen species (ROS) in plant cells, which seriously damage the cellular structures. The engineering of transgenic plants with higher production of ROS-scavenging enzyme in plant cells could protect the integrity of such a fine intracellular structure as the cytoskeleton and each cellular compartment. We analyzed the morphological changes in root tip cells caused by the application of iso-osmotic NaCl and Na2SO4 solutions to tomato plants harboring an introduced superoxide dismutase gene. To study the roots of tomato plants cultivar Belyi Naliv (WT) and FeSOD-transgenic line, we examined the distribution of ROS and enzyme-linked immunosorbent detection of α-tubulin. In addition, longitudinal sections of the root apexes were compared. Transmission electronic microscopy of atypical cytoskeleton structures was also performed. The differences in the microtubules cortical network between WT and transgenic plants without salt stress were detected. The differences were found in the cortical network of microtubules between WT and transgenic plants in the absence of salt stress. While an ordered microtubule network was revealed in the root cells of WT tomato, no such degree of ordering was detected in transgenic line cells. The signs of microtubule disorganization in root cells of WT plants were manifested under the NaCl treatment. On the contrary, the cytoskeleton structural organization in the transgenic line cells was more ordered. Similar changes, including the cortical microtubules disorganization, possibly associated with the formation of atypical tubulin polymers as a response to salt stress caused by Na2SO4 treatment, were also observed. Changes in cell size, due to both vacuolization and impaired cell expansion in columella zone and cap initials, were responsible for the root tip tissue modification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...